
Amesos2 and Belos: Direct and iterative solvers

for large sparse linear systems

Eric Bavier, Mark Hoemmen, Sivasankaran Rajamanickam, and Heidi Thornquist

January 7, 2014

Abstract

Solvers for large sparse linear systems come in two categories: di-
rect and iterative. Amesos2, a package in the Trilinos software project,
provides direct methods, and Belos, another Trilinos package, provides
iterative methods. Amesos2 offers a common interface to many different
sparse matrix factorization codes, and can handle any implementation of
sparse matrices and vectors, via an easy-to-extend C++ traits interface.
It can also factor matrices whose entries have arbitrary “Scalar” type, en-
abling extended-precision and mixed-precision algorithms. Belos includes
many different iterative methods for solving large sparse linear systems
and least-squares problems. Unlike competing iterative solver libraries,
Belos completely decouples the algorithms from the implementations of
the underlying linear algebra objects. This lets Belos exploit the lat-
est hardware without changes to the code. Belos favors algorithms that
solve higher-level problems, such as multiple simultaneous linear systems
and sequences of related linear systems, faster than standard algorithms.
The package also supports extended-precision and mixed-precision algo-
rithms. Together, Amesos2 and Belos form a complete suite of sparse
linear solvers.

1 Introduction

Amesos2 and Belos are packages in the Trilinos project [31] written in ANSI
C++. Together they provide a complete suite of parallel solvers for large sparse
linear systems. Amesos21, a direct methods package, leverages the software
investment of several third-party sparse matrix factorization codes by offer-
ing an easy-to-use, run-time - configurable interface to all of them. It super-
sedes Trilinos’ Amesos package [49, 50]. It improves on Amesos by decoupling
the interface whenever possible from the linear algebra objects, so that it ac-
cepts arbitrary sparse matrix and vector types. Amesos2 also includes its own
“type-generic” factorization for matrices whose entries have any type satisfying
a minimal “Scalar” interface. This includes real and complex types, as well

1Amesos (αµεσoς) is a Greek word that means “direct.”

1

as extended-precision floating-point types such as double-double, quad-double
[33], and ARPREC [4]. This lets users compute highly accurate factorizations
of ill-conditioned matrices.

Belos2 supersedes Trilinos’ AztecOO package [30], which in turn wraps the
Aztec library of iterative solvers [58]. Unlike Aztec and many similar libraries,
Belos completely decouples the numerical algorithms from the underlying linear
algebra objects. This decoupling makes Belos algorithms agnostic of data layout
in memory, the distribution of data over processors, and invocations of parallel
operations such as reductions. As a result, Belos’ performance can track today’s
rapidly evolving computer architectures without effort. Using Trilinos’ Tpetra
package to implement linear algebra operations, Belos can already exploit hy-
brid distributed-memory (via MPI) and shared-memory parallelism, using either
CPU-based or GPU-based compute nodes.

Belos implements both application-aware and architecture-aware algorithms.
Application awareness means making the algorithm faster by changing the prob-
lem, to one that applications want to solve: linear systems with multiple right-
hand sides, or sequences of closely related linear systems. Architecture-aware
means that the algorithms reflect how computer architectures have changed:
rather than floating-point arithmetic operations, the most expensive operations
in terms of performance and energy consumption are communication and data
movement [60, 38]. This, in part, also involves changing the problem: “block”
algorithms for solving multiple right-hand sides simultaneously enable use of
faster computational kernels that amortize communication and data movement
costs. Furthermore, applying mixed-precision algorithms to solve the problem
promises equivalent accuracy but better performance, due to reduced memory
bandwidth requirements [12].

This paper gives an overview of the capabilities of the Amesos2 and Belos
packages. It explains how their modular software architecture makes it easier
for their developers to provide application- and architecture-aware algorithms
with maximal code reuse. Amesos2 and Belos rely almost entirely on other
Trilinos packages or on third-party libraries for implementations of basic dis-
tributed linear algebra operations, preconditioners, and sparse factorizations.
Thus, we do not include performance data in this paper, but refer readers to
the bibliography for details on the performance of the various Trilinos packages
and third-party software.

Section 2 of this paper motivates the development and features of Amesos2
and Belos. The following Section 3 outlines some ways in which Amesos2 and
Belos can and do cooperate. In Section 4, we summarize the sparse factorization
codes which Amesos2 makes available. We describe Amesos2’s software archi-
tecture in Section 5. Likewise, in Section 6, we summarize new Krylov subspace
algorithms implemented in Belos, and in Section 7, we describe Belos’ software
architecture. Finally, in Section 8, we discuss future work.

2Belos (βελoς) is a Greek word that means “arrow,” symbolizing “straight” or “linear.”

2

2 Motivation

Amesos2 and Belos both implement functionality which partially exists in the
Trilinos packages Amesos and AztecOO, respectively. Thus, it is important for
us to justify our effort, both in software engineering and performance terms.
In this section, we show how these improvements justify one another: better
software engineering makes continuing performance improvements easier.

2.1 Independence from the linear algebra library

Many numerical algorithms can operate abstractly on data objects, without
needing to know their internal details. This is, in fact, a main attraction of
Krylov subspace methods. They do not need to read or modify the entries of
the matrix A, preconditioners, or vectors; they only need to apply A or a pre-
conditioner to a vector, compute dot products, and compute weighted sums of
vectors. However, many implementations of Krylov subspace methods do not
exploit this flexibility. For example, Aztec and its C++ wrapper, AztecOO,
allow a user-defined matrix or preconditioner, but impose specific requirements
on the representation and layout of entries in the vectors. Similarly, the “re-
verse communication” interface that was described in [25], only abstracts away
the operation of the matrix A or a preconditioner on a vector, but still requires
direct access to the vector’s elements. This imposition not only limits software
flexibility, it limits performance, because it prevents the linear algebra library
from optimizing the representation of data and the computation of basic oper-
ations. This is especially important in this time of rapidly evolving computer
architectures, as exploiting intranode parallelism and managing data placement
become increasingly important (see e.g., [38, 3]). Separating linear algebra data
representation and computational kernels from the abstract numerical algorithm
frees mathematicians from tracking rapid developments in computer architec-
tures, and gives their software a longer useful life. For a more detailed discussion
of the value of separating linear algebra objects from abstract numerical algo-
rithms, see [7].

2.2 Maximize code reuse

Popular scientific codes such as LAPACK [2] stay in use for decades, and take
generations of highly trained scientific programmers to maintain. This sug-
gests that design practices should favor code reuse, modularity, and generality.
Amesos2 and Belos have followed this principle in their modular software archi-
tecture, described in Sections 5 and 7, respectively. Learning how to specialize
Amesos2’s or Belos’ C++ traits interface takes much less time than reimple-
menting numerical algorithms for each linear algebra library. The abstract traits
interface lets Amesos2 and Belos developers express algorithms in as mathemat-
ical a language as possible, since scientific programmers prefer “describ[ing] the
algorithms in a mathematical language as opposed to a computer language”
[9]. The use of C++ traits classes with compile-time specializations to access

3

basic linear algebra operations means that the “abstraction penalty” per kernel
invocation at run time may be zero (with successful inlining), and is at most
one function call (for the entire kernel). Compile times do increase with C++
templates. However, a few minutes suffice to build and link an entire solver
stack (including multiple distributed linear algebra implementations, solvers,
and preconditioners) from scratch, with full optimization enabled, including a
complete suite of tests. Writing code that works without changes for data of any
Scalar type takes a little extra care, but saves effort over maintaining N copies
of the code for each of N Scalar types. Finally, the run-time customization
capability of Amesos2 and Belos helps programmers avoid programming. Zero
lines of code have zero bugs.

2.3 Application- and architecture-aware algorithms

Many users might ask for a routine that solves a single linear system Ax = b.
However, their application actually calls for solving many linear systems, either

• with the same matrix, but many right-hand sides at once (AX = B, i.e.,
A[x1, . . . , xn] = [b1, . . . , bn]),

• with the same matrix, but many right-hand sides, only available in se-
quence (Axi = bi: i = 1, 2, . . .), or even

• sequences of closely related linear systems (A+∆Ai)xi = bi: i = 1, 2, . . .).

This is often the case in applications performing parameter studies, propagation
of uncertainty in forcing terms, and nonlinear time-dependent analysis [45].
Solving these higher-level problems, instead of just solving one linear system
at a time, often results in more efficient algorithms. We call such algorithms
application aware. Belos implements application-aware algorithms for solving
the above problems: block and pseudoblock iterative methods for AX = B,
and recycling iterative methods for sequences of closely related linear systems
Axi = bi or (A + ∆Ai)xi = bi. For more details, see Section 6.

Architecture-aware algorithms, in turn, have a design influenced by an under-
standing of how much different operations cost on modern computer architec-
tures. Data movement and communication between parallel processors is much
slower than floating-point arithmetic on modern machines, and also consumes
much more energy. Block and pseudoblock solvers are more architecture-aware
than standard iterative methods, because they can use more efficient computa-
tional kernels that amortize communication costs over multiple vectors. Stan-
dard algorithms are stuck with slower kernels, such as SpMV (sparse matrix-
vector multiply) and vector-vector operations. Block methods can use kernels
like SpMM (sparse matrix times multiple dense vectors) and block vector oper-
ations. SpMV has performance dominated by data movement, in particular by
reading the entries of the sparse matrix; SpMM amortizes this cost over multi-
ple vectors (see e.g., [42, 27, 36, 39, 37]). The cost of vector-vector operations
(vector sums and inner products) is dominated by global parallel reductions and

4

by reading and writing the vector entries. Blocking up the vector operations
amortizes the communication cost and enables use of faster BLAS 3 operations
(see e.g., [54, 24, 55, 34, 14]). In the case of block solvers, architecture and
application awareness coincide happily.

Another way in which Amesos2 and Belos are architecture aware, is in mixed-
precision algorithms. Memory bandwidth is a scarce resource on modern pro-
cessors. Reading and writing lower-precision floating-point numbers takes less
bandwidth, but can sacrifice accuracy. Mixed-precision algorithms can regain
much of this accuracy, by using more precise floating-point types to improve the
result of lower-precision computations [12]. Amesos2 and Belos support mixed-
precision computation natively. Both packages’ interfaces accept matrices and
vectors with entries of arbitrary “Scalar” type. Furthermore, they allow linear
algebra objects and solvers with different Scalar types to coexist in the same
program. Many solver libraries are written “abstractly” on the data type, but
that abstraction is implemented via a C typedef rather than by a C++ tem-
plate parameter. Using a typedef means that Scalar is fixed to a single type
when the library is built. Amesos2 and Belos have no such restriction. This
enables mixing objects and algorithms of different floating-point precisions in
the same execution unit. This can be exploited for the development of novel
“adaptive-precision” algorithms. We describe an example of this in Section 7.5.

2.4 Package-specific motivations

Amesos2 inherits the same motivations as Amesos, namely to provide an inter-
face that makes it easy to call any of several sparse direct factorization codes
[50]. No one direct linear solver is best overall, even for problems in the same
class. For example, see [21] for one comparison between supernodal and non-
supernodal direct solvers. Each direct solver has many configuration options,
which are represented in incompatible ways. Most importantly, sparse factor-
izations are some of the most complicated codes to implement because of their
intrusive manipulation of sparse matrix structure. A reasonable description of
these manipulations, even with minimal optimization, takes most of a recently
published book [18]. Thus, it is better to leverage that software investment,
rather than reimplement sparse factorizations with the desired interface and
features. Nevertheless, sparse factorizations have the potential for abstractness,
since they interact with the structure and entries of the sparse matrix in limited
ways. Amesos2 exploits this via its C++ traits interface that allows the library
to accept any sparse matrix data type, with high-performance specializations
for certain types.

Belos inherits many of the same motivations as AztecOO, in that it pro-
vides a suite of iterative linear solvers. However, Belos distinguishes itself from
AztecOO in that these solvers are implemented in a framework that promotes
interoperability, extensibility, and reusability. A basic implementation of any
Krylov subspace method rarely takes more than half a page to describe (see
e.g., [6]). A more abstract view of any Krylov subspace method can break down
this implementation into several components: subspace generation (iteration),

5

orthogonalization, stopping criteria (status testing), and the linear problem.
An appropriately designed framework enables a user or developer to vary any
of these components with little or no need to rewrite an entire solver. Belos’
framework provides these algorithmic components (see Section 7.4) and a C++
traits interface for linear algebra (see Section 2.1) to address the needs of today’s
user and adapt to the needs of tomorrow’s user.

3 Cooperation of Amesos2 and Belos

The most common way in which sparse direct and iterative solvers cooperate
involves using the former to construct preconditioners for the latter. Amesos2’s
complete and incomplete factorizations can be used directly as preconditioners,
as the block solver in a domain decomposition preconditioner, such as block
Jacobi, or as smoothers within a multilevel algebraic preconditioner. Plugging
any preconditioner into Belos requires minimal effort to implement the traits
interface. Amesos2 and Belos can also cooperate in novel ways, for example in
the new “hybrid” direct-iterative Schur complement - based block solver ShyLU
[46]. Finally, Amesos2 and Belos can use the same linear algebra objects (sparse
matrices and vectors). This makes it easy to compare direct and iterative solvers,
or even to use a direct solver as a “backup method” for robustness.

4 Algorithms provided by Amesos2

Amesos2’s users have different application-specific use cases for direct solvers.
The three common use cases come from parallel scalability considerations. First,
users with large ill-conditioned matrices require distributed-memory parallel di-
rect solvers in order to solve the problem accurately. Second, hybrid direct-
iterative solvers like ShyLU [46] require a shared-memory parallel direct solver.
Finally, smoothers within a multilevel preconditioner require a sequential direct
solver. In order to meet the needs of all users, Amesos2 supports all three di-
rect solvers from the SuperLU family: sequential SuperLU [22], multithreaded
SuperLU-MT [23], and distributed-memory parallel SuperLU-Dist [40]. We also
provide an interface to the multithreaded direct solver PARDISO [51]. In addi-
tion, Amesos2 includes the direct solver KLU [21]. KLU is particularly effective
for matrices on which supernodal factorizations do not perform well, such as ma-
trices from circuit simulations. It also serves as a fall-back in case no external
solvers are available.

Amesos2 provides access to mixed-precision algorithms in two ways. First,
its native KLU solver is templated on the type of matrix entries, so it can factor
and solve sparse linear systems whose entries have any Scalar type. Second,
Amesos2’s interface exposes the Scalar types supported by each third-party
solver library, by mapping the user’s data type to a compatible type of equal
or greater precision which the library supports. Amesos2 allows users to access
solvers for different precisions at the same time, without requiring recompliation.

6

5 Amesos2 software architecture

5.1 Amesos2 design assumptions

Amesos2’s primary design goal is to be a single interface for multiple third party
direct solvers. Amesos2 assumes that the direct solvers implement four opera-
tions: preordering, symbolic factorization, numeric factorization, and triangular
solve. While this does not require that the direct solver provide a separate in-
terface to all four stages, Amesos2 may exploit a four-stage interface to improve
performance. For example, while some direct solvers combine the preordering
and the symbolic factorization into one phase, Amesos2 can replace the solver’s
native preordering with a more efficient method. For example, Zoltan’s hy-
pergraph partitioning [11] is useful as a fill-reducing ordering for unsymmetric
matrices. When the direct solvers have the preordering as an option, it may be
more efficient to use our ordering methods and skip the native ordering of the
solvers.

Amesos2 is designed to be used with different types of sparse matrices and
dense vectors. Amesos2 assumes that the matrices and vectors are heavyweight
objects, which the user passes in either by pointer or by reference-counted point-
ers from the Teuchos memory management classes [8]. Depending on the third-
party direct solver being used, Amesos2 might copy the matrix and vector once
into the format required by the direct solver. It holds the symbolic and numeric
factorization and the internal data structures of the direct solver, until the in-
put matrix itself is reset to a new matrix or the Amesos2 Solver object itself is
destroyed.

5.2 Typical Amesos2 usage

The flowchart in Figure 1 summarizes several different use cases for Amesos2
solvers. Amesos2 supports many different use cases, in part because it is de-
signed with both novice and expert users in mind. Novice users usually have
one relatively small linear system and want to solve it with a direct linear solver.
This simple case can be achieved with two lines of code in Amesos2: Create a
solver instance of specific type with the matrix, left-hand side (solution) vector
and the right-hand side vector, then call the solve() method on the solver
instance. Amesos2 does the local ordering and the symbolic and numeric fac-
torization if needed.

Assuming that a sparse matrix A of type MAT and input and output vectors
X resp. B of type MV already exist, here is code illustrating the simplest solve
case, using SuperLU as the underlying solver.

Teuchos : :RCP<Amesos2 : : So lver<MAT,MV> > s o l v e r =
Amesos2 : : c reate<MAT,MV> (” Super lu ” , A, X, B) ;

s o l ve r−>s o l v e () ;

RCP, one of the Teuchos Memory Management classes, represents a reference-
counted “smart” pointer. Both Amesos2 and Belos depend heavily on these

7

classes to manage shared ownership of heavyweight data safely and efficiently.
From now on, all examples will begin with the following code:
using Teuchos : :RCP;

RCP<Amesos2 : : So lver<MAT,MV> > s o l v e r =
Amesos2 : : c reate<MAT,MV> (” Super lu ” , A, X, B) ;

More sophisticated users can separate the preordering and symbolic and
numeric factorization steps. After each step, the solver can report useful infor-
mation, like the total number of stored (structurally nonzero) entries in the L
and U factors. This is useful for computing memory usage and comparing the
effectiveness of different preorderings and solver algorithms.
so l ve r−>numer i cFactor i za t ion () ;
Amesos2 : : Status s o l v e r s t a t u s = so lve r−>getStatus () ;
s td : : cout << ”Number o f e n t r i e s s to r ed in L+U: ”

<< s o l v e r s t a t u s . getNnzLU () << std : : endl ;
s o l ve r−>s o l v e () ;

Expert users of Amesos2 require finer-grained control of local ordering, sym-
bolic and numeric factorization. They will often compute the preordering and
symbolic factorization once for a sequence of matrices with the same nonzero
pattern. When the matrix values have changed, the numeric factorization is then
computed and used, one or more times, to solve the linear problem. Almost all
direct solvers support this use case without any changes. Amesos2 supports this
as well; its interface lets users change the matrix and specify that the next call
to solve() will perform the numeric factorization on the new matrix using the
existing preordering and symbolic factorization. Furthermore, individual steps
of a direct solve can be called explicitly for this new matrix. Most direct solvers
support using the same solver instance for solving multiple linear systems. For
examples, see the Amesos2 source directory.

Amesos2 accepts two optional sets of parameters. The first set of parame-
ters controls Amesos2 itself and supports the most common options among the
direct solvers. The second set of parameters correspond to the specific solver
to use. While it is not a simple task to support every option supported by
every direct solver and maintain that across multiple versions of the solvers, the
infrastructure is in place to do that. The list of parameters will be maintained
based on the needs of Amesos2 users. Here is an example of a simple solve with
SuperLU that sets parameters:
using Teuchos : : ParameterList ;
using Teuchos : : parameterLi s t ;

// Create a ParameterList to ho ld s o l v e r parameters
RCP<ParameterList> amesos2Params = parameterLi s t (”Amesos2”) ;
ParameterList& superluParams = amesos2Params−>s u b l i s t (”SuperLU”) ;
superluParams . s e t (”Trans” , ”TRANS”) ; // So lve with AˆT
// Don ’ t e q u i l i b r a t e the system be fo r e s o l v e .
superluParams . s e t (”Equi l ” , fa l se) ;
// Use the ” na tura l ” column order ing .
superluParams . s e t (”ColPerm” , ”NATURAL”) ;
s o l ve r−>setParameters (amesos2Params) ;

8

so l ve r−>s o l v e () ;

5.3 Interface to matrix and vector types

Amesos2 maximizes code reuse with compile-time polymorphism. One way in
which Amesos2 does so is in its support for various sparse matrix and dense
vector types. Amesos2’s Solver interface has two template parameters: Matrix
and Vector. The former represents a sparse matrix, and the latter a collection
of one or more dense vectors, which are the right-hand side(s) and solution
vector(s). Amesos2 accepts different matrix and vector types via compile-time
specializations of adapters: MatrixAdapter for Matrix, and MultiVecAdapter
for Vector. Solvers in turn use these adapters to access the data, either directly
if the solver supports Matrix and Vector’s native data structures, or by copy
otherwise.

One important motivation for Amesos2’s compile-time polymorphic archi-
tecture is to support linear systems with more than two billion unknowns, as
that was a significant limitation of Amesos. This requires support for integer
indices larger than 32 bits. Another motivation for Amesos2 is support for
mixed-precision computations. Trilinos’ Tpetra package of distributed linear
algebra objects helps Amesos2 achieve both goals. Tpetra templates its matrix
and vector classes on both the “Scalar” (type of matrix or vector entries) and
“Ordinal” (integer index) types. Tpetra objects may have several template pa-
rameters, but Amesos2 hides this complexity by templating its Solver interface
on only the Matrix and Vector types.

This feature also simplifies adding support for new matrix and vector types.
For example, a PETSc sparse matrix [5] can be supported just by specializing
the MatrixAdapter template class. The matrix adapter only requires methods
to access a compressed row (or column), matrix attributes like the dimensions,
a method for describing the matrix’s distribution over distributed-memory pro-
cesses, and an “import” method to redistribute the matrix if the solver requires
it. Once this adapter is written all solvers supported by Amesos2 will work
with the adapter. Amesos2 currently includes adapters for the following Trili-
nos sparse matrices:

• Epetra CrsMatrix and Epetra RowMatrix

• Tpetra::CrsMatrix and Tpetra::RowMatrix

and the following Trilinos dense vectors:

• Epetra MultiVector

• Tpetra::MultiVector

5.4 Interface to solvers

Adding an adapter for a new solver in Amesos2 takes about as much effort
as adding a new matrix or vector adapter. The third party solver’s interface

9

Start

Create Solver of the
desired type with create

(), passing it A (and
optionally X and B)

Solve more
with same

matrix?

Construct / refine
ParameterList of

solver options

Set solver options
(setParameters())

[yes]

[no]
Stop

Call the solver's
setB() and setX()

methods to change
X and B pointers, or
change B in place.

Solve more
with different or

changed
matrix?

[no]

Call solve() to
solve AX=B

Call solver's setX
and setB methods
with your X resp. B

Did you tell
the solver X
and B yet?

[no]

[yes]

[yes]

Call the solver's setA() method.
Indicate how much state (none,

preordering, or symbolic
factorization) you want to save.

Factor the matrix A

Invoke symbolic
factorization

Invoke numeric
factorization

Invoke
preordering

2
Choose next factorization
step depending on which
state of the matrix A you

decided to save.

solve() invokes any of the preordering
or factorization steps not yet invoked,

so these 3 stages are optional.

1

Figure 1: Flowchart of different Amesos2 use cases for solving linear systems.
Dotted connectors denote optional steps. We write AX = B, rather than Ax =
b, to show that each “solve” invocation may be applied to multiple right-hand
sides.

10

Algorithm Type of solver SolverManager subclass
CG Single RHS BlockCGSolMgr
Block CG Block BlockCGSolMgr
Pseudoblock CG Pseudoblock PseudoBlockCGSolMgr
Recycling CG Recycling RCGSolMgr
PCPG Seed PCPGSolMgr
Block GMRES Block BlockGmresSolMgr
Block FGMRES Block BlockGmresSolMgr
Pseudoblock GMRES Pseudoblock PseudoBlockGMRESSolMgr
Recycling GMRES Recycling GCRODRSolMgr
(GCRO-DR)
Hybrid Block GMRES Seed GmresPolySolMgr
MINRES Single RHS MinresSolMgr
Transpose-Free QMR Single RHS TFQMRSolMgr
(TFQMR)
LSQR (least squares) Single RHS LSQRSolMgr

Table 1: List of Krylov subspace methods implemented in Belos, along with the
type of algorithm and the SolverManager subclass which provides the method.
“Single RHS” means that the algorithm can only solve for one right-hand side
at a time.

must at least separate the numeric factorization and solve into two steps. Even
LAPACK’s dense LU factorization does this with the GETRF resp. GETRS
routines, and Amesos2 thus even offers an LAPACK interface. (It first makes
the sparse matrix dense, which might be a reasonable choice for a sufficiently
small matrix.) However, Amesos2 can expose more optimizations if the third
party solver provides a separate interface for all four steps mentioned above.
In addition, the third-party solver must have a way to get and set the solver-
specific parameters and to check if the matrix type is compatible with the solver.
Amesos2 Solver objects must be templated on the matrix and vector types and
use the matrix and vector adapters to convert the matrix and vector objects to
the data structures required by the third-party direct solver. As a result, the
latter will support all the matrices and vectors Amesos2 supports without any
specializations (provided the third party solver is able to handle all the “Scalar”
and “Ordinal” types).

6 Algorithms implemented in Belos

Belos provides implementations of several Krylov subspace methods, listed in
Table 1 along with the C++ class that exposes each method to users. For sym-
metric positive definite systems, Belos implements several variants of CG (the
Method of Conjugate Gradients of Hestenes and Stiefel [32]). For symmetric
indefinite linear systems, Belos offers MINRES, the Minimum Residual method

11

of Paige and Saunders [43]. Belos includes many variants of GMRES (the Gen-
eralized Minimal Residual method of Saad and Schultz [48]), Flexible GMRES
[47], and a Transpose-Free Quasi-Minimal Residual (TFQMR, of Freund [28])
implementation. Finally, Belos has an implementation of Paige and Saunders’
LSQR iteration [44] for solving linear and damped least-squares problems, as
well as possibly singular nonsymmetric linear systems.

Belos does not claim to offer a complete suite of Krylov subspace methods.
Developers have focused on methods most trusted by domain experts for their
robustness, in particular on variants of GMRES. Belos particularly has only
two short-recurrence methods for nonsymmetric linear systems – TFQMR and
LSQR – despite the large number of such methods available in the literature.
This is because users consider them less robust than GMRES. The decreasing
amount of memory expected per node on future large-scale parallel computers
(see e.g., [38]) may make nonsymmetric short-recurrence solvers more attractive
in the future. The Belos solver framework enables rapid development of any de-
sired iterative linear solver, so adapting to application- and architecture-focused
needs is facilitated by its design.

6.1 Block vs. pseudoblock solvers

Block iterations are mathematically different algorithms from their single-vector
counterparts. This means they have different algorithmic performance charac-
teristics, such as the number of iterations to meet the same convergence criteria.
Many Belos users want the computational performance benefit of block iterative
methods, with the same convergence behavior as single-vector methods. Belos
provides this with its “pseudoblock” solvers. These execute the single-vector
algorithm for each right-hand side in “lock step,” by applying the matrix A
and any preconditioners to all vectors in a block at once and using block vector
operations. If one or more of the linear systems meet the convergence criteria
before the rest, the solver “deflates” them by constructing a view of the uncon-
verged right-hand sides, and continuing the iteration on those. Belos provides
two pseudoblock solvers: Pseudoblock GMRES and Pseudoblock CG.

6.2 Recycling solvers

Krylov subspace recycling attempts to accelerate the convergence for a sequence
of linear systems

(A + ∆Ai)xi = bi : i = 1, 2, . . .

through the judicious selection and use of a projection subspace between one
solve and the next [45]. This technique has proven effective for sequences of
closely related linear systems, like those found in modeling fatigue and frac-
ture via finite element analysis. Recycling is also effective when performing
restarting within one linear system [56, 41]. Belos provides two single-vector
recycling solvers: Recycling GMRES (GCRO-DR) and Recycling CG. Sandia
National Laboratories and Temple University are currently collaborating on a
Block Recycling GMRES algorithm to be deployed in Belos [53, 61].

12

6.3 “Seed” solvers

Krylov subspace methods that attempt to accelerate the convergence for a se-
quence of linear systems

Axi = bi : i = 1, 2, . . . ,

where the right-hand sides are not available all at once, are called “seed” solvers.
These solvers either use a random vector or b1 to create a subspace or polynomial
filter to be applied during each solve to accelerate convergence. This subspace
and polynomial can be updated from one solve to the next. Recycling solvers
can also be considered seed solvers, as they could easily be applied to sequences
of linear systems where the matrix does not change. However, Belos provides
two seed solvers specifically for this use case: Hybrid Block GMRES and PCPG.

6.4 Least-squares solvers

Least-squares solvers can always solve Ax = b in a least-squares sense, even if
the matrix A is singular or the system is inconsistent. Belos provides the least-
squares solver LSQR [44], which computes a monotonically increasing lower
bound of the condition number of A, defined as ‖A‖‖A†‖, where A† is the
pseudoinverse of A. This solver is specifically useful for experimentation with
mixed-precision algorithms, which will be discussed in Section 7.5.

7 Belos software architecture

7.1 Belos design assumptions

Belos’ design goal is to offer a generic interface to a collection of iterative
methods for solving large, sparse linear systems. For algorithm developers,
Belos provides algorithmic components that facilitate extensibility and reusi-
bility with the express intent of simplifying the implementation of complex al-
gorithms. Incorporated into the Belos design is the assumption that iterative
methods can be decomposed into several components, including: orthogonal-
ization (OrthoManager), stopping criteria (StatusTest), subspace construction
(Iteration), and a solution strategy (SolverManager). The linear problem,
itself, is described by a separate class (LinearProblem) that incorporates nec-
essary preconditioning or scaling of the linear problem, as defined by the user.
These algorithmic components will be discussed in Section 7.4.

Belos also makes several assumptions regarding the underlying linear alge-
bra objects. These have been incorporated into the design of the operator and
vector traits interfaces. Similar to Amesos2, Belos assumes that the operators
and vectors are heavyweight objects, meaning that sparse matrices and pre-
conditioners are time-consuming to compute and memory for copies of vectors
is limited. This is handled with minimally error-prone explicit memory man-
agement, first by using Trilinos’ Teuchos memory management classes [8] as

13

handles for heavyweight objects, and second by supporting both read-only and
read-write views of vectors.

Belos’ operator and vector traits interface has been simplified through some
parallelism assumptions. First, the concrete linear algebra objects are expected
to handle all explicit communication, so that the implementation of any algo-
rithm looks as much like mathematics as possible. Furthermore, the result of any
reduction operation (dot product, norm, etc.) on a vector or set of vectors (mul-
tivector) is expected to be replicated over all participating distributed-memory
processes. This means that Belos only exploits intranode shared-memory par-
allelism if the concrete linear algebra objects do. Belos does not introduce its
own shared-memory parallelism for the small dense linear algebra operations
required by many Krylov methods. Furthermore, rounding errors in reduc-
tion operations may result in situations where different processes take divergent
paths through the solver. Heterogeneous nodes (see [10]) or the use of nonde-
terministic shared-memory parallelism may exacerbate this problem. This has
not yet proven an issue in practice.

7.2 Typical Belos usage

The flowchart in Figure 2 shows the standard use case for Belos solvers. A Belos
SolverManager requires two items for construction: a LinearProblem object
and a set of options that are stored and passed in using a ParameterList. The
latter, a class in the Teuchos Trilinos package, maps option names to option
values. It allows hierarchical nesting, where an option’s value may itself be a
ParameterList. A user can generate this parameter list in two ways: construct
a minimal list containing a subset of options with nondefault values, or acquire
the solver’s default options by calling getValidParameters() on the solver
object and then modify that list as desired. The LinearProblem object contains
the matrix A, the right-hand side(s) B, the initial guess(es) X, and a left,
right, or both (split) preconditioner(s). The loop in the flowchart returning
to circle “A” shows that the same SolverManager object and parameters can
solve multiple linear systems in sequence. This avoids expensive reconfiguration
and rebuilding of state. In addition, some Belos solvers, such as the recycling
(Section 6.2) and seed (Section 6.3) solvers, may save state computed from
the first solve in order to accelerate subsequent solves. This behavior happens
without user intervention, though users can invoke the solver’s reset() method
to clear out this state for recomputation by the next solve() call.

Here follows a simple example of how to use GMRES to solve a given linear
system AX = B with a right preconditioner M . The matrix A and precondi-
tioner M have type OP, representing an operator such as Epetra Operator or
Tpetra::Operator, and the vectors have type MV, representing a vector such as
Epetra MultiVector or Tpetra::MultiVector. We simplify the example by
using a “factory” to create the solver, though you can also create specific solvers
directly by invoking their constructors.

using Teuchos : : ParameterList ;
using Teuchos : : parameterLi s t ;

14

Start

A

Construct / refine
ParameterList of

solver options

Construct
LinearProblem
AX=B to solve

Construct
SolverManager

subclass for
desired iterative

method

Set solver options
(setParameters())

Call solve() to
solve AX=B

Call setProblem()
with LinearProblem

to solve

Are there
more linear
systems to

solve?

[yes] [no]
Stop

(Reuse Solver
Manager instance
for multiple solves)

Figure 2: Flowchart of typical Belos usage for solving linear systems. Dotted
connectors denote optional steps. We write AX = B, rather than Ax = b, to
show that each “solve” invocation may be applied to multiple right-hand sides.

15

using Teuchos : :RCP;
using Teuchos : : rcp ; // Save some typ ing

// The e l l i p s e s repre sen t the code you would normal ly use to
// crea t e the sparse matrix , precond i t ioner , r i gh t−hand side ,
// and i n i t i a l guess f o r the l i n e a r system AX=B to so l v e .
RCP<OP> A = . . . ; // The sparse matrix / operator A
RCP<OP> M = . . . ; // The (r i g h t) precond i t i oner M
RCP<MV> B = . . . ; // Right−hand s i d e o f AX=B
RCP<MV> X = . . . ; // I n i t i a l guess f o r the s o l u t i on

// Make an empty new parameter l i s t .
RCP<ParameterList> solverParams = parameterLis t () ;

// Set some GMRES parameters .
//
// ”Num Blocks ” = Maximum number o f Krylov v e c t o r s to s t o r e .
// This i s a l s o the r e s t a r t l eng t h . ”Block” here r e f e r s to
// the a b i l i t y o f t h i s p a r t i c u l a r s o l v e r (and many other Belos
// s o l v e r s) to s o l v e mu l t i p l e l i n e a r systems at a time , even
// though we are only s o l v i n g one l i n e a r system in t h i s example .
solverParams−>s e t (”Num Blocks ” , 4 0) ;
solverParams−>s e t (”Maximum I t e r a t i o n s ” , 400) ;
solverParams−>s e t (”Convergence Tolerance ” , 1 . 0 e−8);

// Create the GMRES so l v e r us ing a ” f a c t o r y ” and
// the l i s t o f s o l v e r parameters crea ted above .
Belos : : So lverFactory<Sca lar , MV, OP> f a c t o r y ;
RCP<Belos : : SolverManager<Sca lar , MV, OP> > s o l v e r =

f a c t o ry . c r e a t e (”GMRES” , solverParams) ;

// Create a LinearProblem s t r u c t with the problem to s o l v e .
// A, X, B, and M are passed by (smart) pointer , not copied .
RCP<Belos : : LinearProblem<Sca lar , MV, OP> > problem =

rcp (new Belos : : LinearProblem<Sca lar , MV, OP> (A, X, B)) ;
problem−>setRightPrec (M) ;

// Te l l the s o l v e r what problem you want to s o l v e .
so l ve r−>setProblem (problem) ;

// Attempt to s o l v e the l i n e a r system . r e s u l t == Belos : : Converged
// means t ha t i t was so l v ed to the de s i r ed t o l e rance . This c a l l
// ove rwr i t e s X with the computed approximate s o l u t i on .
Belos : : ReturnType r e s u l t = so lve r−>s o l v e () ;

// Ask the s o l v e r how many i t e r a t i o n s the l a s t s o l v e () took .
const int numIters = so lve r−>getNumIters () ;

7.3 Interface to matrices, vectors, and preconditioners

The Belos solver framework uses C++ templates for compile-time polymor-
phism. All of the algorithmic components have three template parameters: a
scalar type (Scalar), a multivector type (MV), and an operator type (OP). The
scalar type identifies the type of entries in the multivector and operator. The
multivector type is used to represent the right-hand side(s) (B) and the solution

16

vector(s) (X). The operator type is used to represent the matrix A and any
preconditioner(s). Each operator is expected to interact with the multivector
type MV by taking a MV reference as input, and writing the result of applying
the operator (or its transpose or conjugate transpose, if supported) to another
MV reference.

Rather than requiring the specific scalar, multivector, and operator types
to support operations directly, Belos uses a C++ traits interface to implement
compile-time polymorphism. The scalar traits are provided by the ScalarTraits
class in the Teuchos package of Trilinos, and the multivector and operator traits
are provided through Belos’ MultiVecTraits and OperatorTraits class, re-
spectively. Belos currently provides implementations of MultiVecTraits and
OperatorTraits for linear algebra objects from three different Trilinos packages:
Epetra, Tpetra, and Thyra. In addition, users may specialize the traits inter-
face themselves. Finally, a run-time polymorphic interface is available through
Belos’ own MultiVec and Operator abstract interfaces.

7.4 Belos algorithmic components

The Belos design enables the implementation of any iterative method using
algorithmic components, including: the linear problem (LinearProblem), or-
thogonalization (OrthoManager), stopping criteria (StatusTest), subspace con-
struction (Iteration), and a solution strategy (SolverManager). We briefly
summarize each of these essential components here.

7.4.1 Linear problem

A LinearProblem object is a container for operator A, the right-hand side(s) B,
the initial guess(es) X, and a left, right, or both (split) preconditioner(s). This
class defines a minimum interface that can be expected of all linear problems by
the classes that will work with these problems. The methods provided by this
interface are generic enough to define any linear problem that is Hermitian or
non-Hermitian. The LinearProblem class provides a default implementation of
these methods, but a user can modify this using run-time polymorphism.

7.4.2 Orthogonalization

Orthogonalization and orthonormalization are commonly performed computa-
tions in iterative linear solvers and can be implemented in a variety of ways.
The OrthoManager class separates the Iteration from this functionality. The
OrthoManager defines a small number of orthogonalization-related operations,
including a choice of an inner product. The OrthoManager interface has also
been extended, through inheritance, to support orthogonalization and orthonor-
malization using matrix-based inner products in the MatOrthoManager class.

Belos provides several different orthogonalizations, which offer trade-offs be-
tween accuracy and performance. Users can experiment with different orthog-
onalization methods and their parameters by setting run-time options in the

17

solver parameter list. The orthogonalization methods provided by Belos work
on blocks of vectors, and are valid for both Euclidean [55] and non-Euclidean
[57] inner products. Belos supports this in two ways: by passing an inner prod-
uct operator B (such that <, >B , and B is Hermitian positive definite) to a
MatOrthoManager and by changing the inner product method (MvTransMv) in
the interface to the multivector.

Belos provides four concrete orthogonalization managers:

• DGKSOrthoManager - performs Classical Gram-Schmidt (CGS) with a DGKS
correction [15];

• ICGSOrthoManager - performs “Iterated Classical Gram-Schmidt” (ICGS);

• IMGSOrthoManager - performs “Iterated Modified Gram-Schmidt” (IMGS);

• TsqrMatOrthoManager - performs Tall Skinny QR (TSQR) as the normal-
ization step [35].

TSQR provides better performance and accuracy than MGS or CGS when nor-
malizing blocks with multiple columns. However, TSQR is currently only avail-
able for the four Scalar types supported by LAPACK (real and complex IEEE
754 single- and double-precision floating-point values). Furthermore, TSQR
currently only supports orthogonalization with respect to the Euclidean inner
product, though algorithms exist for the general inner product case and can be
implemented given sufficient interest. For solvers that support different orthog-
onalization methods, users may select the method and its parameters (such as
reorthogonalization thresholds) via the ParameterList for the solver of their
choice.

7.4.3 Stopping criteria

Belos provides a generic interface called StatusTest for stopping criteria. Solvers
construct implementations of this interface to control termination of the sub-
space construction (Iteration). Users can also provide custom stopping criteria
by implementing their own StatusTest subclass and passing an instance of it to
the solver. Belos provides classes for composing StatusTest instances, so that
the resulting composite test passes if Boolean combinations of the constituent
tests passed (optionally with short-circuiting semantics to avoid unnecessary
test evaluations). A StatusTest instance “passes” when it thinks the iteration
should stop. This may indicate positive results (e.g., the method has con-
verged to the desired relative residual tolerance) or negative results (e.g., the
maximum number of iterations has been reached). The solution strategy, imple-
mented by the SolverManager, must determine the reason for the termination
of the Iteration by interpreting the results of the various stopping criteria,
and must know how to proceed. Belos’ design assumes that the StatusTest
is evaluated redundantly over all distributed-memory processes and that the
returned Boolean value is the same on all processes. However, if inconsistent
parallel convergence tests are necessary, Belos’ modular design makes it easy

18

to change convergence tests to require agreement between all processors before
terminating the iteration.

7.4.4 Subspace construction

The Iteration class provides generic computational kernels that do not have
the intelligence to determine when to stop the iteration, what the linear prob-
lem of interest is, or how to orthogonalize the basis for a subspace. The intel-
ligence to perform these three tasks is, instead, provided by the StatusTest,
LinearProblem, and OrthoManager objects, which are passed into the con-
structor of an Iteration. This allows each of these three tasks to be modified
without affecting the basic solver iteration. When combined with the status
and state-specific methods provided by the Iteration class, this gives the user
a large degree of control over linear solver iterations.

7.5 Enabling mixed-precision algorithms

Solving problems with the least precision possible saves both storage and mem-
ory bandwidth, which are scarce resources on modern computers and likely
to become scarcer. However, an ill-conditioned matrix A might be numeri-
cally rank-deficient at lower precisions. This may affect accuracy of computed
preconditioners and certain linear solvers. LSQR’s exact condition number
lower bound enables a new kind of algorithm: one which dynamically increases
floating-point precision until it knows it can solve the problem accurately. LSQR
can detect and correct this problem by first attempting to solve the linear sys-
tem at the lowest precision possible (e.g., IEEE 754 single precision). If it finds
that the condition number of A is greater than the inverse of machine precision
at the current working precision, then A is numerically rank deficient at working
precision. An outer loop around LSQR can then increase working precision and
solve again, increasing precision until it finds one at which A is numerically full
rank. The user can then confidently use that precision for successive solves with
A, using either LSQR or another method.

8 Future work

8.1 Amesos2 plans

Amesos2 plans to continue expanding software support for different matrix and
vector representations found within Trilinos. We also may add support for
matrix representations from other software packages such as PETSc [5] or Hypre
[26] if the need arises. Most direct solvers support a simple compressed row or
column format. We plan to support this data structure as well. Amesos2 also
needs an interface to more direct solvers, such as PaStiX [29], MUMPS [1], and
UMFPACK [19, 20, 16, 17]. Finally, we plan to support Cholesky factorization
with an interface to CHOLMOD [13]. This improves upon the previous package
Amesos, which lacked a Cholesky factorization capability.

19

8.2 Belos plans

Belos also offers a modular framework for research and development of new, as
well as known, iterative solvers. It currently provides only two short-recurrence
iterative methods for nonsymmetric linear systems, namely Transpose-Free QMR
(TFQMR) [28] and LSQR [44], as opposed to many GMRES variants. This is
because application developers are more familiar with GMRES’ robustness, but
longer vector recurrence means that it takes more memory. The decreasing
amount of memory expected per node on future large-scale parallel computers
(see e.g., [38]) may make short-recurrence methods for nonsymmetric systems,
like BiCGSTAB [59] or IDR [52], attractive in the future.

Implementation of communication-avoiding Krylov subspace methods [34] is
ongoing in Belos. These algorithms replace the kernels in standard Krylov meth-
ods with new kernels that communicate less between processors and move less
data between levels of the memory hierarchy. The Tall Skinny QR (TSQR) fac-
torization is one of these kernels, and is currently available as a MatOrthoManager
[35]. Implementation of another component, the “matrix powers kernel” that
computes a Krylov subspace basis with minimal communication, is ongoing
work involving a collaboration between Sandia National Laboratories and the
University of California Berkeley.

9 Acknowledgments

Sandia National Laboratories is a multi-program laboratory managed and op-
erated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin
Corporation, for the U.S. Department of Energy’s National Nuclear Security
Administration under contract DE-AC04-94AL85000.

References

[1] P. Amestoy, A. Buttari, A. Guermouche, J.-Y. L’Excellent,
B. Ucar, F.-H. Rouet, C. Weisbecker, M. W. Sid-Lakhdar,
G. Joslin, and M. Brémond, MUMPS Web page, 2012. http://mumps.
enseeiht.fr/ [last accessed 16 April 2012].

[2] E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. Demmel,
J. Dongarra, J. D. Croz, A. Greenbaum, S. Hammarling,
A. McKenney, and D. Sorensen, LAPACK Users’ Guide, SIAM,
Philadelphia, PA, USA, 1999.

[3] K. Asanovic, R. Bodik, J. W. Demmel, T. Keaveny, K. Keutzer,
J. Kubiatowicz, N. Morgan, D. A. Patterson, K. Sen,
J. Wawrzynek, D. Wessel, and K. A. Yelick, A View of the Parallel
Computing Landscape, Communications of the ACM, 52 (2009), pp. 56–67.

20

[4] D. H. Bailey, Y. Hida, X. S. Li, and B. Thompson, ARPREC: An Ar-
bitrary Precision Computation Package, Tech. Rep. LBNL-53651, Lawrence
Berkeley National Laboratory, September 2002. Available at http://crd.
lbl.gov/~dhbailey/dhbpapers/ [last accessed 17 April 2012].

[5] S. Balay, J. Brown, K. Buschelman, W. D. Gropp, D. Kaushik,
M. G. Knepley, L. C. McInnes, B. F. Smith, and H. Zhang, PETSc
Web page, 2012. http://www.mcs.anl.gov/petsc [last accessed 17 April
2012].

[6] R. Barrett, M. Berry, T. F. Chan, J. Demmel, J. Donato, J. Don-
garra, V. Eijkhout, R. Pozo, C. Romine, and H. V. der Vorst,
Templates for the Solution of Linear Systems: Building Blocks for Iterative
Methods, 2nd Edition, SIAM, Philadelphia, PA, USA, 1994.

[7] R. A. Bartlett, Thyra linear operators and vectors: Overview of inter-
faces and support software for the development and interoperability of ab-
stract numerical algorithms, Tech. Rep. SAND2007-5984, Sandia National
Laboratories, September 2007.

[8] , Teuchos C++ memory management classes, idioms, and re-
lated topics: The complete reference (a comprehensive strategy for
safe and efficient memory management in C++ for high performance
computing), Tech. Rep. SAND2010-2234, Sandia National Laborato-
ries, May 2010. Available at http://www.cs.sandia.gov/~rabartl/
TeuchosMemoryManagementSAND.pdf [last accessed 17 April 2012].

[9] V. R. Basili, J. C. Carver, D. Cruzes, L. M. Hochstein, J. K.
Hollingsworth, M. V. Zelkowitz, and F. Shull, Understanding the
high-performance-computing community: A software engineer’s perspective,
IEEE Software, 25 (2008).

[10] L. S. Blackford, A. Cleary, J. Demmel, I. Dhillon, J. Dongarra,
S. Hammarling, A. Petitet, H. Ren, K. Stanley, and R. C. Wha-
ley, Practical experience in the dangers of heterogeneous computing, Tech.
Rep. UT-CS-96-330, University of Tennessee, Knoxville, July 1996. LA-
PACK Working Note #112.

[11] E. Boman, K. Device, R. Heaphy, B. Hendrickson, W. F.
Mitchell, M. S. John, and C. Vaughan, Zoltan: Data-Management
Services for Parallel Applications: User’s Guide, http://www.cs.sandia.
gov/Zoltan/Zoltan.html [last accessed 17 April 2012], 2004.

[12] A. Buttari, J. Dongarra, J. Kurzak, P. Luszczek, and S. To-
mov, Using mixed precision for sparse matrix computations to enhance the
performance while achieving 64-bit accuracy, ACM Transactions on Math-
ematical Software, 34 (2008).

21

[13] Y. Chen, T. A. Davis, W. W. Hager, and S. Rajamanickam, Algo-
rithm 887: CHOLMOD, supernodal sparse Cholesky factorization and up-
date/downdate, ACM Transactions on Mathematical Software, 35 (2009).

[14] A. T. Chronopoulos and A. Kucherov, Block s-step Krylov iterative
methods, Numerical Linear Algebra with Applications, 17 (2010), pp. 3–15.

[15] J. Daniel, W. B. Gragg, L. Kaufman, and G. W. Stewart, Re-
orthogonalization and stable algorithms for updating the Gram-Schmidt QR
factorization, Mathematics of Computation, 30 (1976), pp. 772–795.

[16] T. A. Davis, Algorithm 832: UMFPACK, an unsymmetric-pattern multi-
frontal method, ACM Transactions on Mathematical Software, 30 (2004),
pp. 196–199.

[17] , A column pre-ordering strategy for the unsymmetric-pattern multi-
frontal method, ACM Transactions on Mathematical Software, 30 (2004),
pp. 165–195.

[18] T. A. Davis, Direct methods for sparse linear systems, SIAM, Philadelphia,
PA, USA, 2006.

[19] T. A. Davis and I. S. Duff, An unsymmetric-pattern multifrontal method
for sparse LU factorization, SIAM Journal on Matrix Analysis and Appli-
cations, 18 (1997), pp. 140–158.

[20] , A combined unifrontal / multifrontal method for unsymmetric sparse
matrices, ACM Transactions on Mathematical Software, 25 (1999), pp. 1–
19.

[21] T. A. Davis and E. Palamadai Natarajan, Algorithm 907: KLU, a
direct sparse solver for circuit simulation problems, ACM Trans. Math.
Softw., 37 (2010), pp. 36:1–36:17.

[22] J. W. Demmel, S. C. Eisenstat, J. R. Gilbert, X. S. Li, and
J. W. H. Liu, A supernodal approach to sparse partial pivoting, SIAM
Journal on Matrix Analysis and Applications, 20 (1999), pp. 720–755.

[23] J. W. Demmel, J. R. Gilbert, and X. S. Li, An asynchronous parallel
supernodal algorithm for sparse Gaussian elimination, SIAM Journal on
Matrix Analysis and Applications, 20 (1999), pp. 915–952.

[24] J. W. Demmel, L. Grigori, M. Hoemmen, and J. Langou,
Communication-optimal parallel and sequential QR factorizations: the-
ory and practice, Tech. Rep. UCB/EECS-2008-89, University of Califor-
nia Berkeley, 2008. Also appears as LAPACK Working Note #204 (see
http://www.netlib.org/lapack/lawns/downloads/).

[25] J. Dongarra, V. Eijkhout, and A. Kalhan, Reverse communication
interface for linear algebra templates for iterative methods, Tech. Rep. UT-
CS-95-291, University of Tennessee, Knoxville, May 1995.

22

[26] R. Falgout, A. Cleary, J. Jones, E. Chow, V. Henson, C. Bald-
win, P. Brown, P. Vassilevski, and U. M. Yang, Hypre Web page,
2012. http://acts.nersc.gov/hypre/ [last accessed 17 April 2012].

[27] B. B. Fraguela, R. Doallo, and E. L. Zapata, Memory hierarchy
performance prediction for sparse blocked algorithms, Parallel Processing
Letters, 9 (1999).

[28] R. W. Freund, A Transpose-Free Quasi-Minimal Residual algorithm for
non-Hermitian linear systems, SIAM Journal on Scientific Computing, 14
(1993), pp. 470–482.

[29] P. Hénon, P. Ramet, and J. Roman, PaStiX: A high-performance
parallel direct solver for sparse symmetric definite systems, Parallel Com-
puting, 28 (2002), pp. 301–321. See also the PaStiX web page: http:
//pastix.gforge.inria.fr/ [last accessed 16 April 2012].

[30] M. A. Heroux, AztecOO User Guide, Tech. Rep. SAND2004-3796, Sandia
National Laboratories, August 2007.

[31] M. A. Heroux, R. A. Bartlett, V. E. Howle, R. J. Hoekstra, J. J.
Hu, T. G. Kolda, R. B. Lehoucq, K. R. Long, R. P. Pawlowski,
E. T. Phipps, A. G. Salinger, H. K. Thornquist, R. S. Tuminaro,
J. M. Willenbring, A. Williams, and K. S. Stanley, An overview
of the Trilinos project, ACM Transactions on Mathematical Software, 31
(2005), pp. 397–423.

[32] M. R. Hestenes and E. Stiefel, Methods of conjugate gradients for
solving linear systems, Journal of Research of the National Bureau of Stan-
dards, 49 (1952).

[33] Y. Hida, X. S. Li, and D. H. Bailey, Algorithms for quad-double preci-
sion floating point arithmetic, in Proceedings of 15th IEEE Symposium on
Computer Arithmetic (ARITH-15), June 11-13, IEEE Computer Society,
2001, pp. 155–162.

[34] M. Hoemmen, Communication-avoiding Krylov subspace methods, PhD
thesis, EECS Department, University of California Berkeley, 2010.

[35] , A communication-avoiding, hybrid-parallel, rank-revealing orthogo-
nalization method, in Proceedings of 25th IEEE International Parallel and
Distributed Processing Symposium (IPDPS), Anchorage, AK, USA, May
2011.

[36] E.-J. Im, Optimizing the performance of sparse matrix-vector multiplica-
tion, PhD thesis, University of California Berkeley, May 2000.

[37] E.-J. Im, K. Yelick, and R. Vuduc, Sparsity: Optimization frame-
work for sparse matrix kernels, International Journal of High Performance
Computing Applications, 18 (2004).

23

[38] P. Kogge, K. Bergman, S. Borkar, D. Campbell, W. Carl-
son, W. Dally, M. Denneau, P. Franzon, W. Harrod,
K. Hill, J. Hiller, S. Karp, S. Keckler, D. Klein, R. Lucas,
M. Richards, A. Scarpelli, S. Scott, A. Snavely, T. Ster-
ling, R. S. Williams, and K. A. Yelick, ExaScale Computing
Study: Technology Challenges in Achieving Exascale Systems, September
2008. Available online at http://users.ece.gatech.edu/~mrichard/
ExascaleComputingStudyReports/ECS_reports.htm [last accessed 16
April 2012].

[39] B. C. Lee, R. Vuduc, J. W. Demmel, K. A. Yelick, M. deLorim-
ier, and L. Zhong, Performance optimizations and bounds for sparse
symmetric matrix-multiple vector multiply, Tech. Rep. UCB/CSD-03-1297,
University of California Berkeley, November 2003.

[40] X. S. Li and J. W. Demmel, SuperLU DIST: A scalable distributed-
memory sparse direct solver for unsymmetric linear systems, ACM Trans-
actions on Mathematical Software, 29 (2003), pp. 110–140.

[41] R. Morgan, GMRES with deflated restarting, SIAM Journal on Scientific
Computing, 24 (2002), pp. 20–37.

[42] J. J. Navarro, E. Garćıa, J. L. Larriba-Pey, and T. Juan, Algo-
rithms for sparse matrix computations on high-performance workstations,
in Proceedings of the 10th ACM International Conference on Supercom-
puting, Philadelpha, PA, USA, May 1996, pp. 301–308.

[43] C. C. Paige and M. A. Saunders, Solution of sparse indefinite sys-
tems of linear equations, SIAM Journal on Numerical Analysis, 12 (1975),
pp. 617–629.

[44] , LSQR: An algorithm for sparse linear equations and sparse least
squares, ACM Transactions on Mathematical Software, 8 (1982), pp. 43–
71.

[45] M. L. Parks, E. de Sturler, G. Mackey, D. Johnson, and S. Maiti,
Recycling Krylov subspaces for sequences of linear systems, SIAM Journal
on Scientific Computing, 28 (2006), pp. 1651–1674.

[46] S. Rajamanickam, E. G. Boman, and M. A. Heroux, ShyLU: A
hybrid-hybrid solver for multicore platforms, in Proceedings of 26th Interna-
tional Parallel and Distributed Processing Symposium (IPDPS), Shanghai,
China, May 2012.

[47] Y. Saad, A flexible inner-outer preconditioned GMRES algorithm, SIAM
Journal on Scientific Computing, 14 (1993), pp. 461–469.

[48] Y. Saad and M. H. Schultz, GMRES: A generalized minimal resid-
ual algorithm for solving nonsymmetric linear systems, SIAM J. Sci. Stat.
Comput., 7 (1986), pp. 856–869.

24

[49] M. Sala, K. Stanley, and M. Heroux, Amesos: A set of general
interfaces to sparse direct solver libraries, in Proceedings of PARA’06 Con-
ference, Ume̊a, Sweden, 2006.

[50] M. Sala, K. S. Stanley, and M. A. Heroux, On the design of inter-
faces to sparse direct solvers, ACM Transactions on Mathematical Software,
34 (2008).

[51] O. Schenk and K. Gärtner, Solving unsymmetric sparse systems of lin-
ear equations with PARDISO, Fut. Gen.. Comput. Sys., 20 (2005), pp. 475–
487.

[52] P. Sonneveld and M. B. van Gijzen, IDR(s): A family of simple and
fast algorithms for solving large nonsymmetric systems of linear equations,
SIAM Journal on Scientific Computing, 31 (2008), pp. 1035–1062.

[53] K. Soodhalter, Krylov Subspace Methods with Fixed Memory Require-
ments: Nearly Hermitian Linear Systems and Subspace Recycling, PhD
thesis, Temple University, 2012.

[54] A. Stathopoulos and K. Wu, A block orthogonalization procedure with
constant synchronization requirements, SIAM Journal on Scientific Com-
puting, 23 (2002), pp. 2165–2182.

[55] G. W. Stewart, Block Gram-Schmidt orthogonalization, SIAM Journal
on Scientific Computing, 31 (2008), pp. 761–775.

[56] E. D. Sturler, Truncation strategies for optimal Krylov subspace meth-
ods, SIAM Journal on Numerical Analysis, 36 (1999), pp. 864–889.

[57] S. J. Thomas, A block algorithm for orthogonalization in elliptic norms,
in Proceedings of the Second Joint International Conference on Vector and
Parallel Processing, Lyon, France, September 1–4, 1992, vol. 634 of Lecture
Notes in Computer Science, Berlin, 1992, Springer, pp. 379–385.

[58] R. S. Tuminaro, M. A. Heroux, S. A. Hutchinson, and J. N. Sha-
did, Official Aztec User’s Guide, Version 2.1, Tech. Rep. SAND99 8801J,
Sandia National Laboratories, November 1999.

[59] H. A. van der Vorst, Bi-CGSTAB: A fast and smoothly converging
variant of Bi-CG for the solution of nonsymmetric linear systems, SIAM
J. Sci. Stat. Comput., 13 (1992), pp. 631–644.

[60] W. A. Wulf and S. A. McKee, Hitting the memory wall: Implications
of the obvious, ACM SIGARCH Computer Architecture News, 23 (1995).

[61] F. Xue and H. C. Elman, Fast inexact subspace iteration for generalized
eigenvalue problems with spectral transformation, Linear Algebra and its
Applications, 435 (2011), pp. 601–622.

25

